Halogenation Reactions in Position 3 of Quinoline-2,4dione Systems by Electrophilic Substitution and Halogen Exchange [1]

Wolfgang Stadlbauer*, Rita Laschober, Herbert Lutschounig, Gerda Schindler and Thomas Kappe**

Institute of Organic Chemistry, Department of Organic Synthesis, Karl-Franzens-University Graz, Austria

Summary. 3-Substituted 4-hydroxy-2(1 *H*)-quinolones 3, 5, 7 are halogenated with bromine or sulfuryl chloride to yield the quinolinediones 9 or 10. Reaction of 3, 5, 7 with chloroform gives the dichloromethyl quinolinediones 11. Halogen exchange leads from the chloro quinolinediones 10 to fluoro quinolinediones 12 and to azido quinolinediones 13. Similarly the dichloro quinolinedione 10 an reacts to the difluoro quinolinedione 14, which is reduced to the 3-fluoro-4-hydroxyquinolone 16 and reacts again with sulfuryl chloride to give the mixed 3-chloro-3-fluoroquinolinedione 15.

Keywords. Fluorination; 4-Hydroxy-2(1 *H*)-quinolones, 3-alkyl/3-aryl/3-fluoro; 1-Hydroxy-benzo[ij] quinolizine-3-ones, 2-alkyl/3-aryl; Quinoline-2,4(1 *H*,3 *H*)-diones, 3-azido-3-alkyl/3aryl, 3-bromo-3-alkyl/3-aryl, 3-chloro-3-alkyl/3-aryl, 3-fluoro-3-alkyl/3-aryl, 3-dichloromethyl-3-alkyl/3-aryl, 3-chloro-3-fluoro.

Halogenierungsreaktionen an der 3-Position von Chinolin-2,4-dion-systemen durch elektrophile Substitution und Halogenaustausch [1]

Zusammenfassung. 3-Substituierte 4-Hydroxy-2-chinolone 3, 5, 7 reagieren mit elementarem Brom oder Sulfurylchlorid zu den 3-Halogen-chinolindionen 9 oder 10. Mit Chloroform reagieren die Hydroxychinolone 3, 5, 7 zu den 3-Dichlormethylchinolondionen 11. Halogenaustausch an 10 führt zu den 3-Fluorchinolindionen 12 und zu 3-Azidochinolindionen 13. Ähnlich reagiert 3,3-Dichloro-chinolindion 10 an zu 3,3-Fluorchinolindion 14, das zum 3-Fluor-4-hydroxychinolon 16 reduziert werden kann und in weiterer Folge mit Sulfurylchlorid zum gemischten 3-Chlor-3-fluor-chinolindion 15 reagiert.

Introduction

3,3-Disubstituted quinoline-2,4-dione systems recently have found interest because of their biological activity (e. g. 1-substituted 3,3-diazido-quinolinediones as platelet aggregation inhibitors [2, 3], 3-hydroxy-3-alkylquinoline-2,4-diones as contents of

^{**} Herrn Prof. Dr. Erich Ziegler in freundschaftlicher Verbundenheit zum 80. Geburtstag gewidmet.

bacteria with antibiotic activity [4-6]). Therefore 3-haloquinoline-2,4-diones with 3-alkyl- or 3-aryl substituents, which show similar structural properties in their active methylene group, have been synthesized in order to investigate their chemical and biological properties.

The introduction of a halogen atom in position 3 of a quinolinedione can be achieved either by electrophilic substitution at the keto-enol system of 4-hydroxy-2(1 H)-quinolones with halogens, or by a nucleophilic halogen exchange at the sp³ methylene carbon of the 1,3-dicarbonyl system of the quinoline-2,4-dione.

Electrophilic substitution can be effected e.g. by action of gaseous chlorine, which is prepared in situ by reaction of hydrochloric acid and hydrogen peroxide [7]. Electron rich quinolones are chlorinated by this method in the benzo nucleus too, which restricts this method [7]. A simple reaction uses sulfuryl chloride as source of chloronium ions [3, 4, 7–9]. Another chlorination method was found by reaction of t-butyloxy chloride with carbocyclic 1,3-dicarbonyl compounds [10]. In most cases the bromination is carried out with bromine in acetic acid [4, 11]. Attention must be paid that excess of bromine and long reaction times again result in further bromination of the benzo part of the quinoline nucleus [4, 11].

The introduction of fluorine by direct electrophilic attack is not so simple. A literature survey reveals many possibilities and reagents to synthesize organo fluoro compounds, but a direct fluorination can be achieved only by elemental fluorine (e.g. in the CH group of dimedon silylether at -78° in trifluoromethane [12]) or with strong fluorinating agents such as acetyl hypofluorite, N-fluoro sulfonamide or N-fluoro pyrimidinium salts [13, 14]. Alternatively nucleophilic halogen exchange reactions with fluorinating reagents (e.g. quarternary ammonium fluorides [15] or alkali fluorides supported by crown ether catalysis in aprotic dipolar solvents [16]) are described.

Similar conditions are found in the introduction of the azide anion, which can be considered as pseudo halogen and is known to undergo nucleophilic halogen exchange reactions also in aromatics like dinitro fluorobenzene [17].

In this paper the conditions should be investigated to synthesize azido-, bromo-, chloro- and fluoro derivatives of 3-substituted quinoline-2,4-diones, because some of these showed strong biological activity in preliminary tests.

Results and Discussion

4-Hydroxy-2(1 *H*)-quinolones 3 and 7 and the benzoquinolizinones 5 were synthesized from the substituted malonates 1 and the appropriate anilines 2 or 6, resp., or 1,2,3,4-tetrahydroquinoline 4 in an 1:1 fusion reaction without solvent at temperatures between $250-350^{\circ}$ C using an adapted literature method [17]. In some cases the ring closure of the intermediate malonesteranilide to the hydroxyquinolone took place only in very low yields, caused by the desactivating influence of chloroor trifluoromethyl substituents in the benzo part of the anilines and prevented the synthesis of the hydroxyquinolones 7 d, e, f and i in this way. Alternatively in these cases a two step method was used, where in the first step the malondianilides 8 d, e, f and i were synthesized from the malonates 1 and the anilines 6 d, e, f and i in a 1:2-ratio at 220°C, which could be cyclized in a second step to the hydroxyquinolones 7 d, e, f and i at 150°C using phosphorous pentoxide in methanesulfonic acid [18].

During the work-up of the hydroxyquinolones 3 the crude product is dissolved in sodium hydroxide solution and separated from uncyclized malondianilide and unreacted malonate by extraction with organic solvents. Using chloroform instead of toluene we observed by tlc monitoring that the chloroform layer contained a Halogenation Reactions of Quinolinedione Systems

Scheme 1 For the R-key of compounds 2-8 see Tables 1-4

further compound (especially after long contact of the alkaline hydroxyquinolone solution and the chloroform layer) which was not present in the original crude product. The structure of this compound could be assigned to a 3-dichloromethyl quinolinedione 11, a compound, which could be obtained on a preparative scale with about 40% yield by heating the 4-hydroxyquinolones 3 with aqueous sodium hydroxide solution and chloroform.

This reaction corresponds to the first step of a Reimer-Tiemann reaction. The reason why the reaction stops at the dichloromethyl step and no hydrolysis to the aldehyd occurs, has a simple explanation: in a typical aldehyde synthesis following the Reimer-Tiemann sequence, the primarily formed dichloromethyl compound is dissolved in the alkaline solution because of its phenolic character and can further be hydrolyzed to the aldehyde hydrate. In this way the 3-unsubstituted 4-hydroxy-2(1 H)-quinolone reacted to the corresponding 3-formyl-4-hydroxy-2(1 H)-quinolone [20]. In our

-3a

Scheme 2 For the R-key of compounds 9-13 see Tables 5-9

case, however, after dichloromethylation the formed quinolinedione 11 is not further soluble in alkaline solution but is extracted into the chloroform layer and protected against nucleophilic attacks of hydroxide ions. Other dichloromethyl intermediates of the Reimer-Tiemann synthesis have been isolated during the reaction of *p*-cresol and 1-methyl-2-naphthol [21]. Exchange of the chloro groups in 11 against fluoro or azide groups could not be performed because of the lack of the activating effect of the 1,3-dicarbonyl system. Also attempts to hydrolyse 11 showed a remarkable stability against hydroxide anions. In diluted sodium hydroxide solution no reaction took place, higher concentration led to a number of decomposition products which derived from ring opening reactions. Catalytic hydrogenation of the 3-benzyl-quinolinedione 11 **a** with palladium in the presence of sodium acetate leads to the 4-hydroxy-3-methyl-2(1*H*)-quinolone **3a** by hydrogenolytic loss of the benzyl group and the chloro atoms of the dichloromethyl group. There are a few examples known where a cleavage of the C-C bond in 3,3-disubstituted quinolinediones [22, 23] occurs which show that benzyl groups are cleaved quantitatively, whereas allyl groups are partially reduced to a propyl group. Also

Halogenation Reactions of Quinolinedione Systems

the role of a basic co-catalyst is important [22]. In our case, the amount of sodium acetate has to be calculated to neutralize also the hydrochloric acid which is set free.

3-Bromo-quinoline-2,4(1 H,3 H)-diones 9 could be obtained by reaction of the 4-hydroxyquinolones 3, 5 or 7, resp., with elemental bromine in acetic acid. It was found that in the case of the methoxy substituted hydroxyquinolones 7 j, 1 only very short reaction times had to be used otherwise further bromination in the benzo part occurred. Nevertheless with the 7-methoxyderivative 7 k in all cases a further bromination took place, and only 3,6-dibromo-7-methoxyquinoline-2,4-dione 9 g was isolated.

The synthesis of the 3-chloro-quinoline-2,4-diones 10 was performed using sulfuryl chloride in a dioxane solution, which gave the best results and a simple isolation of the reaction product. Chloroquinolinediones with alkyl groups in both 1- and 3-position were isolated in most cases as an oil and had to be purified by column chromatography or filtration over silica gel. With the methoxyderivatives 7j-1 again the problem of multiple halogenation was observed. Whereas the 6- and 8-methoxyderivatives 7j and 7l, resp., at room temperature yielded the 3-monochloro quinolinediones 10 aj and 10 am, the 7-methoxyderivative 7k reacted at 0°C with sulfuryl chloride to the 3,6-dichloroquinolinedione 10 ak; at 50°C the 3,6,8-trichloroquinolinedione 10 al was formed.

The introduction of a fluoro atom in 3-position of quinolinediones was assumed to be possible in an indirect way by halogen exchange. Among many attempts spray-dried potassium fluoride [19] was found to be an effective fluorinating agent, which led in dry acetonitrile in the presence of 18-crown-6 by exchange of the chloro atom of the quinolinediones 10 to the desired fluoro compounds 12. In other aprotic solvents (e. g. DMF) the formation of 12 could be proved by tlc in small yields, but in most cases large amounts of byproducts were formed, and an isolation was unsuccessful. Also in acetonitrile the reaction must be performed under dry conditions, otherwise the reaction time is increasing enormously. Use of an excess of crown ether allows to decrease the reaction time, but in this way byproducts are formed by hydrolytic effects, which render the isolation of pure 12 more difficult. In the absence of crown ether in dry acetonitrile, the reaction time increases considerably too.

In a similar way the 3-azidoquinolinediones 13 could be obtained from chloroquinolinediones 10 by reaction with the azide anion in DMF as solvent. In this reaction with sodium azide no catalyst is necessary, and the reactions in most cases could be performed at room temperature. The only problem, however, is to determine the end of the reaction, because of the similar tlc R_{f} -values of the educts 10 and the products 13. Fluoroquinolinediones 12 too, react with sodium azide by halogen exchange and formation of the azidoquinolinediones 13.

3,3-Dichloroquinolinedione 10 an, prepared from 4-hydroxyquinolone (3 x) by chlorination with sulfurylchloride [3, 7-9], reacts with potassium fluoride and 18crown-6 to 3,3-difluoroquinolinedione 14. In this case good yields were obtained after heating for 12 h, whereas the 3-fluoroquinolinediones 12 only required 6 h. By mild reduction with zinc dust in acetic acid one fluoro atom was reduced selectively from the 3-position to yield 3-fluoro-4-hydroxy-2-quinolone 16, which in turn could be chlorinated again with sulfuryl chloride to the mixed halogenide, the 3-chloro-3-fluoroquinolinedione 15. Attempts to react 3,3,6- or 3,3,8-trichlor-oquinolinedione, resp., which are analogous to 10 an, with potassium fluoride, were not successful: in these cases only decomposition products were obtained.

Halogenation of the 3-position of 3-substituted 4-hydroxyquinolones leads to a center of chirality; a separation into enantiomers was not attempted. In some ¹H-NMR spectra two sets of signals of groups adjacent to this center were observed, which can be explained by mixtures of enantiomers. The change from the 4-hydroxy quinolones to the quinolinediones is observed by the appearance of a second carbonyl band in the IR spectrum, where first only a broad amide carbonyl band at $1 640 - 1 660 \text{ cm}^{-1}$ is visible, whereas in the spectra of the quinolinediones besides the sharper and intensive amide carbonyl band at about $1 680 \text{ cm}^{-1}$ the 4-carbonyl group at $1 720 \text{ cm}^{-1}$ appears. The 3-fluoroquinolinediones **12** show in the ¹H-NMR spectra an additional fluoro coupling with 3-7 Hz. The azidoquinolinediones **13** show a strong azide band around $2 100 \text{ cm}^{-1}$.

Experimental Part

Melting points were obtained on a Gallenkamp melting point apparatus, Mod. MFB-595 (open capillary tubes). IR spectra were recorded on a Perkin-Elmer 298 (KBr-pellets). ¹H-NMR- and ¹³C-NMR spectra were recorded on a Varian Gemini 200 instrument (*TMS* as internal standard, δ -values in ppm, *DMSO-d*₆ as solvent unless otherwise stated). Microanalyses werde performed on a C,H,N-Automat Carlo Erba 1106.

General Procedure for the Synthesis of the 1,3-Disubstituted 4-Hydroxy-2(1H)-quinolones 3 and 7 and the 2-Substituted 1-Hydroxy-5 H-6,7-dihydro-benzo[ij]quinolizin-3-ones 5

Method A (Direct Synthesis)

A mixture of the alkyl- or arylmalonates 1 (10 mmol) and the appropriate aniline 2 or 6, resp., or the 1,2,3,4-tetrahydroquinoline 4 (10 mmol) was heated for 2-12h to $200-350^{\circ}C$ (time and temperature see Tables 1-3), while ethanol was liberated. After cooling, methanol (20 ml) was added to the semicrystalline residue and the product was filtered by suction. The crude hydroxyquinolones

Table 1. Experimental data of 1,3-disubstituted 4-hydroxy-2(1 H)-quinolones 3 *(following methodA)

No.	R ¹	<i>R</i> ²	<i>R</i> ⁴ Time	Yield (%) Temp.	M. p. (°C) Solvent	Molecular formula ^a
3 a	methyl	Н	Н	Ref. [25]		
3 b	methyl	ethyl	Н	75	203	$C_{12}H_{13}NO_2$
	Ţ	-	12	210	ethanol	203.2
3c	methyl	1-butyl	Н	72	182	$C_{14}H_{17}NO_2$
		-	4	250	ethanol	231.3
3 d	ethyl	н	Н	Ref. [25]		
3e	ethyl	ethyl	Н	74	166	$C_{13}H_{15}NO_2$
			8	250	ethanol	217.3
3f	ethyl	1-butyl	Н	67	185	$C_{15}H_{19}NO_2$
			4	250	ethanol	245.3
3 g	ethyl	phenyl	Н	Ref. [25]		
3h	1-butyl	methyl	Н	68	141	$C_{14}H_{17}NO_2$
			12	220	ethanol	231.3
3 i	1-butyl	ethyl	Н	69	128	$C_{15}H_{19}NO_2$
			4	250	ethanol	245.3
3 j	1-butyl	1-butyl	Н	74	138-41	$C_{17}H_{23}NO_2$
			4	300	ethanol	273.4
3 k	1-butyl	phenyl	Н	66	216	$C_{19}H_{14}NO_2$
			8	250	ethanol	288.3
31	benzyl	Н	Н	Ref. [25]		
3 m	benzyl	ethyl	Н	64	228	$C_{18}H_{17}NO_2$
			4	250	ethanol	279.3
3 n	benzyl	1-butyl	Н	49	182-4	$C_{20}H_{21}NO_2$
			8	250	ethanol	307.4
30	benzyl	benzyl	Н	58	208	$C_{23}H_{19}NO_2$
			12	250	ethanol	341.4
3 p	benzyl	phenyl	Н	Ref. [25]		
3 q	phenyl	Н	Н	Ref. [18]		
3r	phenyl	methyl	Н	Ref. [18]		
3 s	phenyl	ethyl	Н	44	157	$C_{17}H_{15}NO_2$
			12	300	ethanol	265.3
3t	phenyl	1-butyl	Н	68	186-8	$C_{19}H_{19}NO_2$
			12	250	ethanol	293.4
3 u	phenyl	phenyl		Ref. [18]		
3 v	phenyl	ethyl	methyl	28	163	$\mathrm{C}_{18}\mathrm{H}_{17}\mathrm{NO}_{2}$
			12	270	ethanol	279.3
3 w	ethyl	Н	trifluormethyl	31	160 dec.	$C_{12}H_{10}F_{3}NO_{2}$
			12	250	DMF/H ₂ O	257.2
3 x	Н	Н	Н	Ref. [19]		

were dissolved in sodium hydroxide (0.5 N, 100 ml) and filtered to remove uncyclized malondianilides. The filtrate was extracted with toluene $(2 \times 100 \text{ ml})$ to remove unreacted malonate and alkaline insoluble byproducts and then cleared with charcoal. The nearly colorless filtrate was acidified with

No.	R ¹ Time	Yield (%) Temp.	M. p. (°C) Solvent	Molecular formula ^a
5a	1-butyl 4	57 250	153 ethanol	C ₁₆ H ₁₉ NO ₂ 257.3
5 b	ethyl	Ref. [25]		
5 c	benzyl	Ref. [25]		
5 d	phenyl	Ref. [18]		

Table 2. Experimental data of 2-substituted 1-hydroxy-6,7-dihydro-5H-benzo[ij]quinolizin-3-ones 5 (following method A)

No.	R ¹ Method	<i>R</i> ³	R ⁴	<i>R</i> ⁵ Time	Yield (%) Temp.	M. p. (°C) Solvent	Molecular formula ^a
7a	phenyl	Н	н	fluoro	76	320 dec.	C ₁₅ H ₁₀ FNO ₂
	Α			1	280	DMF/H ₂ O	255.2
7 b	phenyl	Н	fluoro	Н	89	330	$C_{15}H_{10}FNO_2$
	А			2	300	DMF/H ₂ O	255.2
7 c	phenyl	fluoro	Н	Н	53	236	C ₁₅ H ₁₀ FNO ₂
	Α			2	280	DMF/H ₂ O	255.2
7 d	phenyl	H	trifluoro-	Н	42	220 dec.	$C_{16}H_{10}F_3NO_2$
	В		methyl	12	250	DMF/H_2O	305.3
7 e	phenyl	Η	Н	chloro	76	335	C ₁₅ H ₁₀ ClNO ₂
	В			2	280	DMF/H ₂ O	271.7
7 f	phenyl	chloro	Η	Н	85	305 dec.	C ₁₅ H ₁₀ ClNO ₂
	В			2	280	DMF/H ₂ O	271.7
7 g	phenyl	Н	chloro	chloro	64	290 dec.	C ₁₅ H ₉ Cl ₂ NO ₂
	A			4	280	DMF/H ₂ O	306.1
7 h	phenyl	chloro	chloro	Н	90	300 dec.	C ₁₅ H ₉ Cl ₂ NO ₂
	Α			4	280	DMF/H ₂ O	306.1
7 i	phenyl	chloro	Η	chloro	Ref. [19]		
7 j	phenyl	Н	Η	methoxy	Ref. [26]		
7 k	phenyl	Н	methoxy	Н	Ref. [26]		
71	phenyl	methoxy	Η	Н	Ref. [26]		
7 m	phenyl	Н	H	trifluor-	88	310	C ₁₆ H ₉ FNO ₂
	Α			methoxy	250	ethanol	266.3
7 n	phenyl	н	Η	methyl	Ref. [26]		
70	phenyl	Н	methyl	Η	Ref. [26]		

Table 3. Experimental data of 4-hydroxy-2(1 H)-quinolones 7

 $^{\rm a}$ satisfactory microanalyses obtained within $\pm 0.4\%$

hydrochloric acid (12 N, 30 ml), the solid was then isolated by filtration and washed several times with water to separate from sodium chloride. Experimental data: see Tables 1, 2, and 3. Spectral data: see Table 10.

Halogenation Reactions of Quinolinedione Systems

No.	IR (KBr)	¹ H-NMR (<i>DMSO-d</i> ₆), δ/ppm
3 b	3 300-2 800 b, 1 625 m, 1 600 m, 1 570 s	0.8 (t, $J=7$ Hz, butyl-CH ₃), 1.0-1.8 (m, 2 butyl-CH ₂), 4.2 (q, J=7 Hz, 1-butyl-CH ₂), 7.0-7.7 (m, 3 ArH), 8.0 (dd, J=2+7 Hz, 5 H) 10.1 (c, 0H)
3e	3 300-2 850 b, 1 630 s, 1 600 s, 1 580 s	J=2+7 Hz, 5-H, 10.1 (s, OH) $0.7-1.1 \text{ (m, ethyl-CH}_3, \text{ butyl-CH}_3), \text{ 1.2}-1.8 \text{ (m, 2 butyl-CH}_2), 2.6 \text{ (q, } J=7 \text{ Hz, ethyl-CH}_2), 4.2 \text{ (t, } J=7 \text{ Hz, 1-butyl-CH}_2), 4.2 \text{ (t, } J=7 \text{ Hz, 1-butyl-CH}_2), 7.0-7.7 \text{ (m, 3 } Ar\text{H}), 8.0 \text{ (dd, } J=2+7 \text{ Hz, 5-H}), 10.0 \text{ (s, OH)}$
3h	3 400-3 000 b, 2 950 m, 1 630 m, 1 605 s	
3i	3 300-2 860 b, 1 640 sh, 1 630 m, 1 605 m	0.7-0.9 (m, butyl-CH ₃), 1.1 (t, $J=7$ Hz, ethyl-CH ₃), 1.2-1.5 (m, 2 butyl-CH2), 4.2 (q, ethyl-CH ₂), 7.0-7.5 (m, 2 ArH), 8.0 (dd, $J =$
3j	3 300-3 100 m, 2 900 m, 1 640 m, 1 605 m	2+7 Hz, H-3), 9.9 (s, OH) 0.7-1.0 (m, 2 butyl-CH ₃), 1.1-2.0 (m, 4 butyl-CH ₂), $2.4-2.8(t, J=7 Hz, 3-CH2),4.0-4.3$ (t, $J=7$ Hz, N-CH ₂), 7.1-7.6 (m, 3 <i>Ar</i> -H), 8.0 (dd, $J=2+7$ Hz, 5-H), 10.0 (s, OH)
3 k	3 400-3 000 b, 2 950 m, 1 630 m, 1 605 s	
3n	3 300-2 850 m, 1 620 m, 1 600 s, 1 570 s	 0.7-1.0 (t, J=7 Hz, butyl-CH₃), 1.1-1.7 (m, 2 butyl-CH₂), 4.0 (s, benzyl-CH₂), 4.2 (t, N-CH₂), 7.0-7.7 (m, 8 ArH), 8.1 (dd, J=2+7 Hz, 5-H), 10.4 (s, OH)
3t	3 200-2 800 m, 1 615 sh, 1 610 s, 1 560 s	0.8 (t, $J = 7$ Hz, butyl-CH ₃), 1.1 - 1.8 (m, 2 CH ₂), 4.1 (t, $J = 7$ Hz, N-CH ₂), 7.0 - 7.9 (m, 8 ArH), 8.1 (dd, J = 2 + 7 Hz, 5-H)
3 w	3 300-2 800 b, 1 640 s, 1 610 s, 1 560 sh	1.0 (t, $J = 7$ Hz, CH ₃), 2.5 (q, $J = 7$ Hz, CH ₂), 6.8 - 8.2 (m. 3 <i>Ar</i> H)
5 a	3 400-3 000 b, 2 950 m, 1 630 m, 1 600 m, 1 580 s	
7 d	3 200-2 800 b, 1 660 sh, 1 640 m, 1 620 s	
7 e	3 300-2 800 m, 1 640 s, 1 605 m	
7 m	3 300-2 600 b, 1 640 s, 1 615 s, 1 590 m	7.2 (s, 5 <i>Ar</i> H), 7.25–7.35 (m, 2 <i>Ar</i> H), 7.8 (d, <i>J</i> =2 Hz, H-5)

Table 10. Spectral data of the 4-hydroxy-2-(1*H*)-quinolones 3 and 7, and 1-hydroxy-benzo[ij]quinolizinones 5

No.	R^1	<i>R</i> ³	R ⁴	<i>R</i> ⁵ Time	Yield (%) Temp.	M.p. (°C) Solvent	Molecular formula ^a
8 d	phenyl	Н	trifluormethyl	H 2 h	78 250	182 ethanol	$C_{17}H_{12}F_6N_2O_2$ 390.3
8e 8f 8i	phenyl phenyl phenyl	H chloro chloro	H H H	chloro H chloro	Ref. [19] Ref. [19] Ref. [19]		

Table 4. Experimental data of phenylmalondianilides 8

Table 5. Experimental data of 3-bromo quinoline-2,4(1 H,3 H)-diones 9

No.	R^1	<i>R</i> ²	<i>R</i> ³	<i>R</i> ⁴	<i>R</i> ⁵	Yield (%) Starting material	M. p. (°C) Solvent	Molecular formula ^a
9a	phenyl	Н	Н	Н	Н	78 3g	173 ethanol	$C_{15}H_{10}BrNO_2$ 316.2
9 b	phenyl	Н	Н	methyl	Н	75 7 n	196 ethanol	$C_{16}H_{12}BrNO_2$ 330.2
9c	phenyl	Н	Н	Н	methyl	77 7 o	177 ethanol	C ₁₆ H ₁₂ BrNO ₂ 330 .2
9 d	benzyl	ethyl	Н	Н	Н	54 3 m	86 – 88 ethanol	C ₁₈ H ₁₆ BrNO ₂ 358 .2
9e	phenyl	Н	Н	Н	methoxy	73 7 j	160 – 63 toluene	C ₁₆ H ₁₂ BrNO ₃ 346.2
9f	phenyl	Н	methoxy	Н	н	79 71	191–92 toluene	C ₁₆ H ₁₂ BrNO ₃ 346.2
9 g	phenyl	Н	Н	methoxy	bromo	68 7 k	151–55 acetic acid	C ₁₈ H ₁₅ Br ₂ NO ₃ 453.1

^a satisfactory microanalyses obtained within $\pm 0.4\%$

Method B (2-Step Synthesis via the Appropriate Malondianilides 8)

Synthesis of the Malondianilides 8. A mixture of the alkyl- or arylmalonates 1 (10 mmol) and the appropriate substituted anilines 6 was heated for 5 h in an oil bath to 220°C using a short air condenser to remove the liberated ethanol. When the reaction has ended, the melting is cooled, digested subsequently with methanol (20 ml) and petroleum ether (50 ml), the crystal pulp is filtered by suction and recrystallized from the solvents listed in Table 4.

Cyclization of the Dianilides 8 to the 4-Hydroxy-2-quinolones 7. A suspension of the appropriate malondianilides 8 (10 mmol) in 100 ml methanesulfonic acid containing phosphorpentoxide (10%) was heated in an oil bath for 60 min to $150-170^{\circ}$ C. After cooling, the mixture was poured on ice and filtered. Work up was performed as described in method A. Experimental data: Table 3. Spectral data: Table 10.

No.	IR (KBr)	¹ H-NMR (<i>DMSO-d</i> ₆), δ /ppm
9c	3 200 – 2850 m, 1 705 m, 1 665 s, 1 615 m	
9 e		3.7 (s, OCH ₃), $7.0 - 7.5$ (m, $8 ArH$),
		9.3 (s, NH)
9 f		3.8 (s, OCH ₃), $6.9 - 7.5$ (m, $8 ArH$),
		10.0 (s, NH)
9 g		3.9 (s, OCH ₃), 7.1 (s, 5 <i>Ar</i> H),
		7.3 (s, 8-H), 7.7 (s, 5-H)

 Table 11. Spectral data of the 3-bromoquinoline-2,4(1 H,3 H)-diones 9

General Procedure for the Synthesis of the 3-Bromo-quinoline-2,4(1H,3H)-diones 9

To a suspension of the hydroxyquinolone 3 or 7, resp., (20 mmol) in glacial acetic acid (40 ml) at room temperature bromine (1.5 ml = 4.66 g, 29 mmol) is dropped under stirring. The solution obtained is stirred further 10 min, then ice/water (200 ml) is added to give a yellow precipitate, which is filtered. Experimental data: Table 5. Spectral data: Table 11.

General Procedure for the Synthesis of the 3-Chloro-quinoline-2,4(1H,3H)-diones 10

A suspension or solution of the 4-hydroxy-2(1 *H*)-quinolone 3 or 7, resp., or the 1-hydroxybenzo[ij]quinolizin-3-one 5 (10 mmol) in dioxane (40 ml) was warmed to $40-50^{\circ}$ C and then under vigorous stirring sulfurylchloride (2.0 ml, 24 mmol) was added dropwise, while the temperature should not exceed 60°C. After 10 min stirring the mixture was poured onto ice/water. The oily product was separated from the aqueous layer, subsequently washed with water (100 ml) and then filtered. 10 b, e, g, and h were isolated as oil, dissolved in diethylether (50 ml), dried with sodium sulfate and mixed with silicagel 60 (5 g, 70-230 mesh). After stirring for 10 min at room temperature, the adsorbens was removed by filtration and the solvent removed in vacuo. Experimental data: Table 6. Spectral data: Table 12.

General Procedure for the Synthesis of 3-Dichloromethyl-quinolin-2,4(1H,3H)-diones 11

A solution of the appropriate 4-hydroxyquinolone 3 (0.01 mol) in water (30 ml), ethanol (20 ml) and sodium hydroxide (5 g, 0.125 mol) was treated with chloroform (10 ml) and tetramethylammoniumhydroxide (40%, 0.5 ml). The mixture was heated under reflux for 30 min, then another 15 ml of chloroform was added and the mixture heated again for 30 min. The cooled mixture was diluted with chloroform (50 ml) and water (50 ml), then the layers were separated and the aqueous layer acidified with 2N HCl to yield about 40% of the starting material (3). The organic layer was washed with water, cleared with charcoal and after drying with sodium sulfate the solvent was evaporated in vacuo. The residue was triturated with cold methanol and recrystallized from the same solvent. Experimental data: Table 6. Spectral data: Table 13.

General Procedure for the Synthesis of the 3-Fluoro-quinoline-2,4(1H,3H)-diones 12

A suspension of the appropriate 3-chloroquinoline-2,4-dione 10 (3 mmol), 18-crown-6 (0.1 g, 0.4 mmol) and spray-dried potassium fluoride [19] (0.23 g, 4 mmol) in dry acetonitrile (20 ml) was refluxed for 6 h. After cooling the potassium halides were filtered and most of the solvent removed in vacuo. The

No.	R^1	R ²	<i>R</i> ³	<i>R</i> ⁴	<i>R</i> ⁵	Yield (%) Starting material	M. p. (°C) Solvent	Molecular formula ^a
	methyl	Н	Н	Н	Н	93	172	C ₁₀ H ₈ ClNO ₂
						3a	$AcOH/H_2O$	209.6
10 b	methyl	l-butyl	H	Н	Н	57	43 b	$C_{14}H_{16}CINO_2$
10 e	ethvl	н	н	ч	ч	3C 90	106	200.7 C.H. CINO
100	etilyi	11	11	11	11	3d	AcOH/H-O	273.7
10 d	ethvl	ethvl	н	н	Н	51	63	C ₁₂ H ₁₄ ClNO ₂
	-	- ····· j -		_		3e	AcOH/H ₂ O	251.7
10 e	ethyl	1-butyl	Н	Н	Н	68	oil	C ₁₅ H ₁₈ ClNO ₂
						3f	b	279.8
10f	ethyl	phenyl	Н	H	Η	73	163	C ₁₇ H ₁₄ ClNO ₂
						3 g	$AcOH/H_2O$	299.8
10 g	1-butyl	ethyl	Н	Н	Н	56	oil	$C_{15}H_{18}CINO_2$
101	1 1	1 1	TT	TT	11	31	. 11	279.8
1V N	I-butyi	1-butyi	н	н	н	40	O1I b	$C_{17}H_{22}CINO_2$
10 i	1-butvl	nhenvl	н	н	н	5]	126	C.H.CINO
101	1-outyi	phenyi	11	11		3k	EtOH/HaO	327 8
10 i	benzvl	Н	Н	н	н	97	181	C16H12CINO2
- a						31	AcOH/H ₂ O	285.7
10 k	benzyl	ethyl	Н	Н	Н	64	71	C ₁₈ H ₁₆ ClNO ₂
	•	-				3 m	<i>Et</i> OH/H ₂ O	313.8
101	benzyl	1-butyl	Н	Н	Η	71	86	$C_{20}H_{20}ClNO_2$
						3 n	$EtOH/H_2O$	341.8
10 m	benzyl	benzyl	Н	Н	Н	59	96	C23H18CINO2
						30	<i>Et</i> OH/H ₂ O	375.9
10 n	benzyl	phenyl	Н	Н	Н	83	121	$C_{22}H_{16}ClNO_2$
10 -		TT .		ττ	TT	3p	$AcOH/H_2O$	361.8
100	phenyl	П mathul	н ц	H U	н ц	Kei. [/]	154	C II CINO
10 h	phenyi	metnyi	п	п	п	00 3 r	134 ethanol	$C_{16}\Pi_{12}CINO_2$
10 a	nhenvl	ethvl	н	н	н	93	117	CiaH. CINO
104	phenyr	omyr				35	<i>Et</i> OH/H ₂ O	299.8
10 r	phenyl	1-butyl	Н	Н	н	92	52	$C_{19}H_{18}ClNO_2$
	1 2	2				3t	ethanol	327.8
10 s	phenyl	phenyl	Н	Н	Н	Ref. [27]		
10 t	ethyl	$-(CH_2)_2$	_	Н	Н	Ref. [3]		
10 u	1-butyl	$-(CH_2)_2$	_	Н	Н	Ref. [3]		
10 v	benzyl	$-(CH_2)_2$	_	H	H	Ref. [25]		
10 w	phenyl	$-(CH_2)_2$		H	Н	Ref. [25]	150	
10 aa	phenyl	Н	Н	Н	<i>tluoro</i>	52	179 E:011	$C_{15}H_9CIFNO_2$
10 ch	nh cm 1	ц	п	fluoro	ч	7 a 54	<i>LI</i> UH 150	289.7 C U CIENO
10 80	phenyi	п	п	nuoro	п	յգ 7h	139 <i>Ет</i> ОН	289 7
10 ac	phenvl	н	fluoro	н	н	68	164 - 166	C ₁ H ₀ ClFNO ₂
~~ **	Puon				••	7 c	<i>Et</i> OH	289.7

Table 6. Experimental data of 3-chloro-quinoline-2,4(1 H,3 H)-diones 10

Tab	le 6	continued	f

10 ad	phenyl	Н	Н	trifluor- methyl	Н	39 7 d	168 — 170 ligroin	C ₁₆ H ₉ ClF ₃ NO ₂ 339.7
10 ae	phenyl	Н	Н	Н	chloro	Ref. [3]		
10 af	phenyl	Н	chloro	H	Н	72	150 - 152	C ₁₅ H ₉ Cl ₂ NO ₂
						7 f	<i>Et</i> OH	306.1
10 ag	phenyl	н	Н	chloro	chloro	58	244-246	C ₁₅ H ₈ Cl ₃ NO ₂
•						7 g	MeOH	340.9
10 ah	phenyl	Н	chloro	chloro	Н	79	162-164	C ₁₅ H ₈ Cl ₃ NO ₂
						7 h	acetic acid	340.9
10 ai	phenyl	н	chloro	Н	chloro	85	156-160	C ₁₅ H ₈ Cl ₃ NO ₂
						7 i	<i>Et</i> OH	340.9
10 aj	phenyl	Н	Н	Н	methoxy	73	168-172	C ₁₆ H ₁₂ ClNO ₃
						7 j	<i>Et</i> OH	301.7
10 ak	phenyl	Н	Н	methoxy	chloro	36	236	$C_{16}H_{11}Cl_2NO_3$
						7 k	<i>Ac</i> OH	336.2
10 al	phenyl	Н	chloro	methoxy	chloro	21	198	$C_{16}H_{10}Cl_3NO_3$
						7 k	ligroin	370.6
10 am	phenyl	Н	methoxy	Н	Н	77	168-172	C ₁₆ H ₁₂ ClNO ₃
						71	<i>Et</i> OH	285.3
10 an	chloro	Н	Н	Н	Н	Ref. [7-9]		

^a satisfactory microanalyses obtained within $\pm 0.4\%$ ^b Purified over silica gel

No.	IR (KBr)	¹ H-NMR (<i>DMSO-d</i> ₆), δ/ppm
10 d	2 980 – 2880 w, 1 705 s, 1 670 s, 1 600 s	0.95 (t, $J = 7$ Hz, ethyl-CH ₃),
		1.2 (t, $J=7$ Hz, ethyl-CH ₃), 2.3 (q,
		$J = 7 \text{ Hz}, 3 \text{-ethyl-CH}_2),$
		4.1 (q, $J = 7$ Hz, 1-ethyl-CH ₂), 7.3 (dt,
		J = 2 + 7 Hz, 7-H),
		7.5 (dd, $J=2+7$ Hz, 8-H), 7.8 (dt,
		J = 2 + 7 Hz, 6-H),
		7.95 (dd, $J = 2 + 7$ Hz, 5-H)
10 f	3 080 – 2920 w, 1 710 s, 1 670 s,	
	1 630 w, 1 600 s	· · · · · · · · · · · · · · · · · · ·
10 i	2 950 – 2860 w, 1 710 s, 1 680 s, 1 600 s	1.85 s (t, $J=7$ Hz, CH ₃), 1.3 (m, 2
		CH ₂),
		2.3 (q, $J = / Hz$, 3-CH ₂), 6.4 (d,
		J = / Hz, 1 ArH),
		7.2 - 7.7 (m, $7ArH$), 8.0 (dd,
101.	2060 2020- 1700 1670 1600 1	J=2+/Hz, 5-H
10 K	3000 - 2930 w, 1700 s, 1670 s, 1600 s	1.1 (t, $J = /HZ$, ethyl-CH ₂), 2.7 (d, $L = 2$ Hz, here d CH) 4.1 (c
		$3.7 (d, J = 3 Hz, benzyl-CH_2), 4.1 (q, J = 7 Hz, other) CH_2)$
		$J = / HZ, \text{ ethyl-CH}_2),$ 7.0.7.8 (m 8.4.11) 7.05 (dd
		$1.0 - 1.0$ (III, $8 A^{2}$ H), 1.95 (dd, $1 - 2 + 7 H_{2} + 5 H)$
		J=2+7 Hz, 5-H) (m, 8 ArH), 7.95

Table 12. Spectral data of the 3-chloroquinoline-2,4(1 H,3 H)-diones 10

Table 12.	continued
-----------	-----------

No.	IR (KBr)	¹ H-NMR (<i>DMSO-d</i> ₆), δ/ppm
101	3 080 - 3020 w, 2 980 - 2 850 m, 1 720 s,	0.5-0.8 (m, CH ₃), $1.0-1.6$ (m,
	1 685 s, 1 650 w, 1 620 s, 1 590 m	2 CH ₂), 3.5 (s, benzyl-CH ₂),
		3.7-4.0 (m, N-CH ₂), $6.8-7.6$ (m,
		8 ArH),
		7.9 (dd, $J=2+7$ Hz, 5-H)
10 n	1 700 m, 1 675 s, 1 600 m	$3.7 (s, CH_2), 6.7 (d, J=7 Hz, 1 ArH),$
		7.05-7.7 (m, $7 Ar$ H), 8.0 (dd,
		J = 2 + 7 Hz, 5-H)
10 q	2 980 w, 1 710 s, 1 680 s, 1 600 s	
10 r	3060 w, 2980 - 2860 w, 1710 s,	
10	1 0 / 5 s, 1 000 s 2 200 s - 2 000 m - 1 740 s - 1 700 s - 1 (20 s	
10 aa 10 ab	3300 s, 3080 m, 1740 s, 1700 s, 1630 s	6 90 7 10 (m 5 H 6 H) 7 40 (c
IU ad	3220 - 2800 b, 1/30 m, 1/10 m, 1690 m,	0.80 - 7.10 (m, 5-H, 6-H), 7.40 (s, 5.4 H) 7.70 - 8.05 (m 8. H)
	1670 m, 16108	5 A/H, 7.70 -8.05 (III, 8-H),
10 ac	3200 - 2800 h 1715 m 1680 m 1625 s	11.55 (8, 1411)
10 ac 10 ad	3200 - 2700 b 1720 m 1700 s 1630 m 1600 m	740 (m 7 Ar H) 810 (d $J=7$ Hz 5-
10 44	5500 2700 0, 1720 m, 1700 0, 1050 m, 1000 m	H). 10.10 (s. NH)
10 af	3 360 s. 3 240 – 3 000 b. 1 735 s. 1 700 s. 1 610 s	6.90 (m. 8 ArH), 8.50 (b. NH)
10 ag	3 240 – 2900 b. 1 725 m. 1 700 s. 1 610 s	7.30 (s. 6-H), 7.40 (s. 5 Ar H), 7.90 (s.
8		5-H), 11.40 (s, NH)
10 ah	3 250 – 3100 b, 1 730 m, 1 700 s, 1 605 s	7.25-7.70 (m, 6ArH), 7.90 (d,
		J = 7 Hz, 5-H), 8.65 (b, NH)
10 ai	3 350 s, 1 730 s, 1 700 s, 1 595 s	7.35 (s, 5 ArH), 7.6-7.9 (m, 5-H, 7-
		H)
10 aj	3 280 s, 1 720 m, 1 700 m, 1 680 s	3.70 (s, OCH ₃), 7.00-7.60 (m,
		6 <i>Ar</i> H),
		7.9 (d, $J = 7$ Hz, 5-H), 8.65 (b, NH)
10 ak	3 300 – 2800 b, 1 735 s, 1 680 s,	3.80 (s, OCH ₃), 6.80 (s, 8-H), 7.30 (m,
	1 620 m, 1 600 s	5 ArH), 7.8 (s, 5-H)
10 al	3 300 – 2800 b, 1 735 s, 1 680 s, 1 620 m	4.00 (s, OCH ₃), 7.50 (m, 5 <i>Ar</i> H), 7.80
		(d, J=7 Hz, H-5)
10 am	3 280s, 1 700 m, 1 680 s	3.70 (s, OCH ₃), $7.00-7.60$ (m,
		8 ArH), 11.20 (s, NH)

Table 13. Spectral data of the 3-dichloromethyl-quinoline-2,4(1 H,3 H)-diones 11

No.	IR (KBr)	¹ H-NMR (CDCl ₃), δ/ppm
11 a	1 690s, 1 655 s, 1 610 m, 1 590 m	3.45 (s, CH ₂), 6.2 (s, CHCl ₂),
		$6.6 - 7.4$ (m, $3 ArH$), 6.85 (s, C_6H_5),
		7.7 (dd, $J=2+8$ Hz, 1 H, 5-H), 9.7 (s, br,
		NH)
11 b	3 100 – 2 980 w, 1 700 s, 1 680 s, 1 610 s	
11 c	3 280m, 1 710 s, 1 665 s, 1 610 m, 1 595 m	6.7 (s, CHCl ₂), $6.65 - 7.5$ (m, $8 ArH$),
		7.75 (dd, $J=2+8$ Hz, 1 H, 5-H), 9.9 (s, b, NH)

630

No.	<i>R</i> ¹	<i>R</i> ²	Yield (%) Starting material	M. p. (°C) Solvent	Molecular formula ^a
11 a	benzyl	н	31	171	$C_{17}H_{13}Cl_2NO_2$
			31	methanol	334.2
11 b	phenyl	ethyl	34	178	$C_{18}H_{15}Cl_2NO_2$
			3s	methanol	348.2
11 c	phenyl	Н	36	182	$C_{16}H_{11}Cl_2NO_2$
	- •		3 q	methanol	320.2

Table 7. Experimental data of 3-dichloromethyl-quinoline-2,4(1H,3H)-diones 11

Table 8. Experimental data of 3-fluoro-quinoline-2,4(1 H,3 H)-diones 12

						· · · · · · · · · · · · · · · · · · ·		······································
No.	R^1	R^2	R^3	R^4	<i>R</i> ⁵	Yield (%) Starting material	M. p. (°C) Solvent	Molecular formula ^a
12 a	ethyl	Н	Н	Н	Н	76	184	$C_{11}H_{10}FNO_2$
						10 c	<i>Et</i> OH/H ₂ O	207.3
12 b	ethyl	ethyl	Н	Н	Н	87	98	$C_{13}H_{14}FNO_2$
						10 d	ethanol	235.3
12 c	1-butyl	1-butyl	Н	Н	Н	63	62	$C_{17}H_{22}FNO_2$
						10 h	EtOH/H ₂ O	291.3
12 d	benzyl	Н	Н	Н	Н	65	193	$C_{16}H_{12}FNO_2$
						10 j	$MeOH/H_2O$	269.3
12 e	benzyl	phenyl	Н	Н	Н	68	128	$C_{22}H_{16}FNO_2$
						10 n	$MeOH/H_2O$	345.4
12 f	benzyl	ethyl	Н	Н	Н	56	125	$C_{18}H_{16}FNO_2$
						10 k	$MeOH/H_2O$	297.3
12 g	benzyl	1-butyl	Н	Н	H	52	120	$C_{20}H_{20}FNO_2$
						101	$MeOH/H_2O$	325.4
12 h	phenyl	Н	Н	Н	Н	76	196	$C_{15}H_{10}FNO_2$
						10 o	ethanol	255.2
12 i	phenyl	methyl	Η	Н	Η	86	175	$C_{16}H_{12}FNO_2$
						10 p	methanol	269.3
12 j	phenyl	ethyl	Н	Н	H	91	175	$C_{17}H_{14}FNO_2$
						10 q	$MeOH/H_2O$	283.3
12 k	phenyl	1-butyl	Η	Н	Η	92	112	$C_{19}H_{18}FNO_2$
						10 r	ethanol	311.3
121	phenyl	phenyl	Н	Н	Η	81	198	$C_{21}H_{14}FNO_2$
						10 s	methanol	331.3
12 m	ethyl	$-(CH_2)_3-$		Н	Н	65	126	$C_{14}H_{14}FNO_2$
						10 t	$EtOH/H_2O$	247.3
12 n	1-butyl	-(CH ₂) ₃ -		Н	Н	77	200 - 3	$C_{16}H_{18}FNO_2$
						10 u	methanol	275.2
12 o	phenyl	Н	Н	H	fluoro	77	242 - 44	$C_{15}H_9F_2NO_2$
						10 aa	ethanol	273.2

No.	R ¹	R ²	R^3	R ⁴	<i>R</i> ⁵	Yield (%) Starting material	M. p. (°C) Solvent	Molecular formula ^a
12 p	phenyl	Н	Н	fluoro	Н	78 10 ab	222 - 26	$C_{15}H_{9}F_{2}NO_{2}$
12 q	phenyl	Н	fluoro	Н	Н	71 10 ac	226-29	$C_{15}H_{9}F_{2}NO_{2}$
12 r	phenyl	Η	Н	trifluoro- methyl	Н	46 10 ad	214 - 15	$C_{16}H_9F_4NO_2$
12 s	phenyl	Н	Н	H	chloro	74 10 ac	270 - 72	$C_{15}H_9ClFNO_2$
12 t	phenyl	Н	chloro	Н	н	50 10 of	160-62	$C_{15}H_9ClFNO_2$
12 u	phenyl	Н	Н	chloro	chloro	10 al 75	264-66	$C_{15}H_8C1_2FNO_2$
12 v	phenyl	Н	chloro	chloro	н	10 ag 67	208 - 210	$C_{15}H_8Cl_2FNO_2$
12 w	phenyl	н	Н	Н	methoxy	10 an 98 10 ai	248-50	$C_{16}H_{12}FNO_3$
12 x	phenyl	н	Н	methoxy	chloro	10 aj 78	250-53	$C_{16}H_{11}CIFNO_3$
12 y	phenyl	н	chloro	methoxy	н	10 ak 72	249-53	$C_{16}H_{10}CIFNO_3$
12 z	phenyl	Н	methoxy	Н	Н	10 al 98 10 am	toluene 229 – 30 acetic acid	319.7 C ₁₆ H ₁₂ FNO ₃ 285.3

W. Stadlbauer et al.

Table 8. continued

 $^{\rm a}$ satisfactory microanalyses obtained within $\pm 0.4\%$

Table 14. Spectral data of the 3-fluoroquinoline-2,4(1 H,3 H)-diones 12

No.	IR (KBr)	¹ H-NMR (<i>DMSO-d</i> ₆), δ /ppm ¹³ C-NMR (<i>DMSO-d</i> ₆), δ /ppm
12 a	3 250 – 2870 m, 1 710 m, 1 680 s, 1 610 m,	0.8 (t, $J = 7$ Hz, CH ₃), 2.1 – 2.3 (m, 2 H, CH ₂), 6.9 – 7.2 (m, 2.4 × H), 7.4 – 7.6 (m, 1.4 × H)
	1 000 11	7.8 (dd. J=2+7 Hz, 5-H, 11.1 (s. NH)
12 b	2 980 w, 1 710 s, 1 690 sh, 1 675 s, 1 600 m	$0.95 (t, J, = 7 Hz, 3-ethyl-CH_3),$
		1.3 (t, $J = 7$ Hz, N-ethyl-CH ₃),
		1.85 - 2.35 (m, 3-ethyl-CH ₂), $3.9 - 4.2$ (m, N-
		ethyl-CH ₂),
		7.1-7.3 (m, 2ArH), 7.6-7.8 (m, 1ArH),
		7.95 (dd, $J=2+7$ Hz, 5-H)
12 c	2 960 – 2860 s, 1 710 s, 1 680 s, 1 600 s	0.5-0.95 (m, 2 CH ₃), $1.0-1.8$ (m, 4 CH ₂),
		1.8-2.2
		(m, CH ₂), 3.8 (q, $J = 7$ Hz, N-CH ₂),
		7.0 - 7.4
		(m, 2ArH), 7.5 - 7.8 (m, 2ArH)

632

Table 14. continued

12 d	3 200 – 2920 w, 1 705 m, 1 670 s, 1 615 w, 1 600 m	3.22+3.35 (2d, $J=3$ Hz, CH ₂), 7.0-7.3 (m, 7 <i>Ar</i> H),
		7.0 (dd, $J = 2 + 7$ Hz, 7-H), 7.8 (dd, $J = 2 + 7$ Hz, 5-H), 11.1 (s. NH)
12 e	3 050 – 2980 w, 1 720 s, 1 695 m, 1 600 m	3.37 und 3.52 (2d, $J=7$ Hz, CH ₂), 7.05-7.7 (m, 13 <i>Ar</i> H), 7.85 (dd, $J=2+7$ Hz, 5 H)
12 f		(1.05) (dd, $J = 2 + 7$ Hz, $S - H$) 0.9 (t. $J = 7$ Hz, CH_2) 1.25 - 1.6 (m. 2 CH ₂)
		3.2+3.35 (2d, $J=3$ Hz, CH ₂), $3.7-4.1$ (m, N-
		CH ₂),
		6.9-7.0 (m, $2ArH$), $7.1-7.4$ (m, $5ArH$),
		7.65-7.8 (m, 2 <i>Ar</i> H)
12 g	2980–2850 w, 1705 s, 1670 s, 1600 s	0.85-1.1 (m, CH ₃), 1.3-1.7 (m, 2 CH ₂),
		3.15 + 3.45 (2d, $J = 3$ Hz, CH ₂), $3.6 - 4.0$ (m, N-
		CH ₂),
191	2 280 2080 - 1 720 - 1 710 - 1 (05 -h	6.9 - 7.4 (m, $7ArH$), $7.55 - 7.8$ (m, $2ArH$)
121	5280 - 5080 III, 1750 w, 1710 s, 1695 sil, 1675 m 1615 m 1595 m	
12 k	2.980 m, 2.930 w, 2.870 w, 1.715 s, 1.680 s.	
	1 600 s	
121	1 715 s, 1 680 s, 1 600 s	6.5-6.7 (m, 8-H), $7.0-7.6$ (m, $12Ar$ H), 8.0 (dd, I=2+7Hz, 5 -H)
		13 C-NMR: 95.3 (C-3), 116.2 (8-C), 119–129 (<i>Ary</i> l-C), 132.1 (1-C von 3-Phenyl),
		136.2 (1-C von 1-Phenyl), 142.5 (8aC), 165.8 (2- C=O), 197.5 (4-C=O)
120	3 250 b, 1 750 m, 1 725 s, 1 705 s, 1 680 m, 1 630 m	
12 p	3 200 – 2890 b, 1715 s, 1 690 s, 1 630 s, 1 600 m	
12 q	3 240 – 2900 b, 1 725 m, 1 700 s, 1 630 m	
12 s	3 240 s, 1 745 s, 1 720 s, 1 695 s, 1 670 m,	
104	1610s	
12 t 12 n	33008, 17438 , 10938 , $100383200 - 2860 h$, 17158 , 16058 , 16058	
12 u 12 v	3200 - 20000, 17155, 10955, 10055	
12 v 12 w	3215b. 1730s. 1710s. 1680s. 1615m	3.70 (s. OCH ₂), $7.00 - 7.20$ (m. $2.4r$ H), 7.40 (m.
		6 <i>Ar</i> H)
12 x	3 200 – 2900 b, 1 715 s, 1 680 s, 1 615 s	
12 y	3 200 b, 1 720 s, 1 670 s, 1 600 s	3.90 (s, OCH ₃), 7.1 (d, $J = 7$ Hz, H-6), 7.75 (d, $J = 7$ Hz, H-5)
12 z	3 300 – 2900 b, 1 720 s, 1 685 s, 1 615 m,	3.75 (s, OCH ₃), 7.00-7.20 (m, 2ArH), 7.3 (m,
	1 595 m	6 <i>Ar</i> H), 10.40 (s, b, NH)

No.	R ¹	<i>R</i> ²	<i>R</i> ³	<i>R</i> ⁴	R ⁵	Yield (%) Starting material	M. p. (°C) Solvent	Molecular formula ^a
13 a	ethyl	Н	Н	н	Н	95	115-17	$C_{11}H_{10}N_4O_2$
						10 c	cyclohexane	230.2
13 b	ethyl	ethyl	Н	н	Η	59	98	$C_{13}H_{14}N_4O_2$
						10 d	cyclohexane	258.3
13 c	1-butyl	phenyl	Н	\mathbf{H}	Η	65	186	$C_{19}H_{18}N_4O_2$
						10 i	cyclohexane	334.4
13 d	benzyl	Н	Н	Н	Η	89	151	$C_{16}H_{12}N_4O_2$
						10 j	benzene	292.3
13 e	phenyl	Н	Н	н	Н	98	169	$C_{15}H_{10}N_4O_2$
						10 o	toluene	278.3
13f	phenyl	methyl	Н	н	Н	55	128	$C_{16}H_{12}N_4O_2$
	_					10 p	toluene	292.3
13 g	phenyl	ethyl	Н	н	Н	67	118-120	$C_{17}H_{14}N_4O_2$
-		-				10 q	toluene	306.3
13 h	phenyl	phenyl	Н	н	Н	93	132-33	$C_{21}H_{14}N_4O_2$
						10 s	cyclohexane	345.3
13 i	phenyl	Н	Н	н	chloro	92	177	C15H9ClN4O2
						10 ae	cyclohexane	312.7
13 j	phenyl	Н	chloro	н	Н	84	182-84	$C_{15}H_9ClN_4O_2$
•						10 af	toluene	312.7
13 k	phenyl	Н	Н	н	methoxy	79	182-183	$C_{16}H_{12}N_4O_3$
						10 aj	ethanol	308.3
131	phenyl	Н	Н	methoxy	chloro	66	220	$C_{16}H_{11}CIN_4O_3$
						10 ak	acetic acid	342.7
13 m	phenyl	н	chloro	methoxy	chloro	57	160	$C_{16}H_{10}Cl_2N_4O_3$
						10 al	acetic acid	376.2
13 n	1-butyl	$-(CH_2)_3-$		Н	Н	67	86	$C_{16}H_{18}N_4O_2$
	-	, ,				10 u	ethanol	298.3
130	benzyl	$-(CH_2)_3 -$		Н	Н	90	93-95	$C_{19}H_{16}N_4O_2$
	-	. 2,5				10 v	cyclohexane	332.3
13 p	phenyl	-(CH2) ₃ -		Н	Н	93	96	$C_{18}H_{14}N_4O_2$
	1					10 w	benzene	318.3

Table 9. Experimental data of 3-azido-quinoline-2,4(1 H,3 H)-diones 13

residue was triturated with water (100 ml), stirred for 1 h and then filtered by suction. Experimental data: Table 8. Spectral data: Table 14.

General Procedure for the Synthesis of 3-Azido-quinolin-2,4(1H,3H)-diones 13

A solution of the corresponding dichloro quinolinedione 10 (3 mmol) in dimethyl formamide (30 ml) was treated with sodium azide (0.3 g, 4.5 mol) in portions under ice cooling. The suspension was stirred for 1 h at 20°C, then diluted with ice/water (100 ml) and the resulting crystalline precipitate was filtered, washed with water and dried under vacuum at room temperature. Experimental data: Table 9. Spectral data: Table 15.

No.	IR (KBr)
13 a	3200 – 2880 w, 20 s, 1705 m, 1675 s, 1615 m, 1620 w
13 b	2980 – 2880 w, 2105 s, 1710 s, 1670 s, 1600 s
13 c	2960 – 2870 w, 2120 s, 1715 s, 1680 s, 1600 s
13 d	3210 – 2920 b, 2110 s, 1760 w, 1705 s, 1680 s, 1610 m
13 e	3150 – 2950 b, 2110 s, 1710 s, 1680 s, 1610 m
13f	2100 s, 1710 s, 1670 s, 1600 s
13 g	2980 w, 2100 s, 1705 s, 1670 m, 1600 m
13 h	2100 s, 1715 s, 1685 s, 1600 s
13 i	3310 m, 2100 s, 1715 s, 1690 s, 1610 s
13 j	3320 m, 2100 s, 1710 s, 1685 s, 1600 s
13 k	3200 – 2920 m, 2120 s, 1710 m, 1670 s, 1625 w
131	3200 – 2850 m, 2215 s, 1715 s, 1670 s, 1615 m
13 m	3300 – 3080 m, 2120 s, 1730 m, 1690 s, 1600 m
13 n	2960 – 2880 m, 2120 s, 2100 sh, 1705 s, 1665 s, 1590 s
13 0	2929 s, 2100 s, 1690 s, 1650 s
13 p	2100 s, 1705 s, 1670 s, 1595 s

Table 15. Spectral data of the 3-azido-quinoline-2,4-(1 H,3 H)-diones 13

3,3-Difluoro-quinolin-2,4(1H,3H)-dione (14)

A solution of the dichloroquinolinedione **10 an** (18.4 g, 0.08 mol), spray-dried potassium fluoride [19] (13.9 g, 0.24 mol) and 18-crown-6 (0.5 g, 2 mmol) in dry acetonitrile (100 ml) was heated under reflux for 12 h. The solvent was removed in vacuo, the residue was treated with a small amount of icecold water to remove the excess of potassium fluoride, the formed potassium chloride and the crown ether, and then was filtered. Yield: 12.6 g (80%), dark yellow prisms, m. p. $156-158^{\circ}C$ (ligroin). ¹³C-NMR (CDCl₃): $\delta = 78.5$ (3-CF₂), 118-142 (*Ar*-C), 162 (amide-C=O), 184 (4-C=O). C₉H₅F₂NO₂ (197.1): calcd. C 54.83, H 2.55, N 7.10; found C 54.90, H 2.59, N 7.01.

3-Chloro-3-fluoro-quinoline-2,4(1H,3H)-dione (15)

To a solution of 3-fluoro-4-hydroxyquinolone (16) (0.72 g, 4 mmol) in dioxane (10 ml), sulfurylchloride (0.4 ml, 4.9 mmol) was added slowly at room temperature. After the end of the exothermic reaction (about 10 min) the mixture was poured into ice/water (100 ml) and the resulting precipitate filtered by suction. Yield: 0.50 g (59%) yellow prisms, m. p. $194-195^{\circ}$ C (toluene). IR: $3\,250-2\,920\,\text{m}$, $1\,735\,\text{s}$, $1\,700\,\text{s}$, $1\,610\,\text{s}$. ¹H-NMR: $\delta = 6.9 - 7.1$ (m, $2\,ArH$), 7.5 (dd, $J = 2 + 7\,\text{Hz}$, $1\,ArH$), 7.8 (dd, $J = 2 + 7\,\text{Hz}$, 1 H, 5-H), 11.5 (s, b, NH). ¹³C-NMR: $\delta = 77$ (CCIF), 115–143 (*Ar*-C), 156 (amide-C=O), 175 (4-C=O). C₉H₅CIFNO₂ (213.6): calcd. C 50.60, H 2.31, N 6.55; found C 50.79, H 2.38, N 6.42.

3-Fluoro-4-hydroxy-2(1H)-quinolone (16)

A hot solution of the difluoroquinolinedione 14 (1.0 g, 5 mmol) in glacial acetic acid (50 ml) was treated with zinc dust until the solution was decolorized. Then the hot solution was filtered from the insoluble residue, the resulting solution treated with water (100 ml) and the formed precipitate filtered by suction. Yield: 0.65 g (73%) pale yellowish needles, m. p. $281 - 282^{\circ}C$ (ethanol). IR: 3250 - 2600 m, 1650 s, 1610 s. ¹H-NMR: $\delta = 7.2 - 7.6$ (m, 3ArH), 8.0 (dd, J = 2 + 7Hz, 1 H, 5-H), 11.7 (s, b, NH). C₉H₆FNO₂ (179.1): calcd. C 60.34, H 3.37, N 7.81; found C 60.42, H 3.44, N 7.70.

References

- Organic Azides in Heterocyclic Synthesis, part 16. Part 15: Roschger P., Fiala W., Stadlbauer W., J. Heterocycl. Chem. (1982) in press
- [2] Kappe C. O., unpublished
- [3] Malle E., Stadlbauer W., Ostermann G., Hofmann B., Leis H. J., Kostner G. M. (1990) Eur. J. Med. Chem. 25: 137
- [4] Laschober R., Stadlbauer W. (1990) Liebigs Ann. Chem. 1990: 1083
- [5] Kitamura S., Hashizume K., Iida T., Miyashitsa E., Shirata K., Kase H. (1986) J. Antibiot. 39: 1160
- [6] Neuenhaus W., Budzikiewicz H., Korth H., Pulverer G. (1979) Z. Naturforsch. 34b: 313;
 Budzikiewicz H., Schaller U., Korth H., Pulverer G. (1979) Monatsh. Chem. 110: 974
- [7] Ziegler E., Salvador R., Kappe Th. (1962) Monatsh. Chem. 93: 1376
- [8] Ziegler E., Kappe Th. (1963) Monatsh. Chem. 94: 447
- [9] Fournier C., Decombe J. (1967) Bull. Soc. Chim. Fr. 1967: 3367; (1967) C. R. Acad. Sci. Paris, Ser. C. 265: 1169
- [10] Witoszynsky Th. (1972) Ph. D. thesis. University of Graz, p. 58; Lakhvich F. A., Kozinets V. A., Rubinov D. B., Akhrem A. A. (1987) Zh. Org. Khim. 23: 2626
- [11] Ziegler E., Salvador R., Kappe Th. (1963) Monatsh. Chem. 94: 941
- [12] Purrington S. T., Bumgardner C. L., Lazaridis N. V., Singh P. (1987) J. Org. Chem. 52: 4307
- [13] Visser G. W. M., Herder R. E., De Kanter F. J. J., Herscheid J. D. M. (1988) J. Chem. Soc. Perkin Trans. 1 1988: 1203
- [14] Bohlmann R. (1990) Nachr. Chem. Techn. Lab. 38: 40
- [15] Rieux C., Langlois B., Gallo R. (1990) C. R. Acad. Sci., Ser. II 310: 25; Cox D. P., Terpinsky J., Lawrynowicz W. (1984) J. Org. Chem. 49: 3216
- [16] Liotta C. L., Harris H. P. (1974) J. Am. Chem. Soc. 96: 2251
- [17] Zima V., Pytela O., Kavalek J., Vecera M. (1989) Coll. Czech. Chem. Commun. 54: 2715
- [18] Stadlbauer W., Schmut O., Kappe Th. (1980) Monatsh. Chem. 111: 1005; Baumgarten P., Kärgel W. (1927) Ber. Dtsch. Chem. Ges. 60: 832
- [19] Kappe Th., Karem A. S., Stadlbauer W. (1987) J. Heterocyclic Chem. 25: 857
- [20] Aldrich Chemie GmbH, Steinheim, FRG, catalog no. 30, 759-9
- [21] Asahina Y., Inubuse M. (1932) Ber. Dtsch. Chem. Ges. 65: 61
- [22] Krauch H., Kunz W. (1976) Reaktionen der Organischen Chemie, Alfred Hüthig Verlag, Heidelberg, p. 613
- [23] Kappe Th., Ziegler E. (1969) Synthesis: 74
- [24] Kappe Th., Fritz P. F., Ziegler E. (1973) Chem. Ber. 106: 1927
- [25] Stadlbauer W., Kappe Th. (1982) Z. Naturforsch. 37 b: 1196, and references cited therein
- [26] Stadlbauer W., Kappe Th. (1985) Monatsh. Chem. 116: 1005
- [27] Lang G. (1972) Ph. D. thesis. Karl-Franzens University of Graz, p. 84-85

Received September 26, 1991. Accepted November 5, 1991